Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone Res ; 12(1): 13, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409111

RESUMO

Poor bone quality is a major factor in skeletal fragility in elderly individuals. The molecular mechanisms that establish and maintain bone quality, independent of bone mass, are unknown but are thought to be primarily determined by osteocytes. We hypothesize that the age-related decline in bone quality results from the suppression of osteocyte perilacunar/canalicular remodeling (PLR), which maintains bone material properties. We examined bones from young and aged mice with osteocyte-intrinsic repression of TGFß signaling (TßRIIocy-/-) that suppresses PLR. The control aged bone displayed decreased TGFß signaling and PLR, but aging did not worsen the existing PLR suppression in male TßRIIocy-/- bone. This relationship impacted the behavior of collagen material at the nanoscale and tissue scale in macromechanical tests. The effects of age on bone mass, density, and mineral material behavior were independent of osteocytic TGFß. We determined that the decline in bone quality with age arises from the loss of osteocyte function and the loss of TGFß-dependent maintenance of collagen integrity.


Assuntos
Remodelação Óssea , Osteócitos , Humanos , Idoso , Masculino , Animais , Camundongos , Remodelação Óssea/fisiologia , Colágeno/farmacologia , Envelhecimento , Fator de Crescimento Transformador beta/farmacologia
2.
Small ; : e2311832, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386283

RESUMO

The molecular foundations of epidermal cell wall mechanics are critical for understanding structure-function relationships of primary cell walls in plants and facilitating the design of bioinspired materials. To uncover the molecular mechanisms regulating the high extensibility and strength of the cell wall, the onion epidermal wall is stretched uniaxially to various strains and cell wall structures from mesoscale to atomic scale are characterized. Upon longitudinal stretching to high strain, epidermal walls contract in the transverse direction, resulting in a reduced area. Atomic force microscopy shows that cellulose microfibrils exhibit orientation-dependent rearrangements at high strains: longitudinal microfibrils are straightened out and become highly ordered, while transverse microfibrils curve and kink. Small-angle X-ray scattering detects a 7.4 nm spacing aligned along the stretch direction at high strain, which is attributed to distances between individual cellulose microfibrils. Furthermore, wide-angle X-ray scattering reveals a widening of (004) lattice spacing and contraction of (200) lattice spacing in longitudinally aligned cellulose microfibrils at high strain, which implies longitudinal stretching of the cellulose crystal. These findings provide molecular insights into the ability of the wall to bear additional load after yielding: the aggregation of longitudinal microfibrils impedes sliding and enables further stretching of the cellulose to bear increased loads.

3.
PNAS Nexus ; 2(12): pgad363, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094616

RESUMO

Understanding the biomechanical behavior of the intervertebral disc is crucial for studying disease mechanisms and developing tissue engineering strategies for managing disc degeneration. We used synchrotron small-angle X-ray scattering to investigate how changes to collagen behavior contribute to alterations in the disc's ability to resist compression. Coccygeal motion segments from 6-month-old lean Sprague-Dawley rats ( n=7) and diabetic obese University of California Davis type 2 diabetes mellitus (UCD-T2DM) rats ( n=6, diabetic for 68±7 days) were compressed during simultaneous synchrotron scanning to measure collagen strain at the nanoscale (beamline 7.3.3 of the Advanced Light Source). After compression, the annulus fibrosus was assayed for nonenzymatic cross-links. In discs from lean rats, resistance to compression involved two main energy-dissipation mechanisms at the nanoscale: (1) rotation of the two groups of collagen fibrils forming the annulus fibrosus and (2) straightening (uncrimping) and stretching of the collagen fibrils. In discs from diabetic rats, both mechanisms were significantly impaired. Specifically, diabetes reduced fibril rotation by 31% and reduced collagen fibril strain by 30% (compared to lean discs). The stiffening of collagen fibrils in the discs from diabetic rats was consistent with a 31% higher concentration of nonenzymatic cross-links and with evidence of earlier onset plastic deformations such as fibril sliding and fibril-matrix delamination. These findings suggest that fibril reorientation, stretching, and straightening are key deformation mechanisms that facilitate whole-disc compression, and that type 2 diabetes impairs these efficient and low-energy elastic deformation mechanisms, thereby altering whole-disc behavior and inducing the earlier onset of plastic deformation.

4.
J Bone Miner Res ; 37(11): 2259-2276, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36112316

RESUMO

Diabetes mellitus (DM) is an emerging metabolic disease, and the management of diabetic bone disease poses a serious challenge worldwide. Understanding the underlying mechanisms leading to high fracture risk in DM is hence of particular interest and urgently needed to allow for diagnosis and treatment optimization. In a case-control postmortem study, the whole 12th thoracic vertebra and cortical bone from the mid-diaphysis of the femur from male individuals with type 1 diabetes mellitus (T1DM) (n = 6; 61.3 ± 14.6 years), type 2 diabetes mellitus (T2DM) (n = 11; 74.3 ± 7.9 years), and nondiabetic controls (n = 18; 69.3 ± 11.5) were analyzed with clinical and ex situ imaging techniques to explore various bone quality indices. Cortical collagen fibril deformation was measured in a synchrotron setup to assess changes at the nanoscale during tensile testing until failure. In addition, matrix composition was analyzed including determination of cross-linking and non-crosslinking advanced glycation end-products like pentosidine and carboxymethyl-lysine. In T1DM, lower fibril deformation was accompanied by lower mineralization and more mature crystalline apatite. In T2DM, lower fibril deformation concurred with a lower elastic modulus and tendency to higher accumulation of non-crosslinking advanced glycation end-products. The observed lower collagen fibril deformation in diabetic bone may be linked to altered patterns mineral characteristics in T1DM and higher advanced glycation end-product accumulation in T2DM. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Masculino , Humanos , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/diagnóstico por imagem , Diabetes Mellitus Tipo 2/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Osso e Ossos/metabolismo , Colágeno/metabolismo
5.
Biomacromolecules ; 23(7): 2878-2890, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35748755

RESUMO

Nanoscopic structural control with long-range ordering remains a profound challenge in nanomaterial fabrication. The nanoarchitectured egg cases of elasmobranchs rely on a hierarchically ordered latticework for their protective function─serving as an exemplary system for nanoscale self-assembly. Although the proteinaceous precursors are known to undergo intermediate liquid crystalline phase transitions before being structurally arrested in the final nanolattice architecture, their sequences have so far remained unknown. By leveraging RNA-seq and proteomic techniques, we identified a cohort of nanolattice-forming proteins comprising a collagenous midblock flanked by domains typically associated with innate immunity and network-forming collagens. Structurally homologous proteins were found in the genomes of other egg-case-producing cartilaginous fishes, suggesting a conserved molecular self-assembly strategy. The identity and stabilizing role of cross-links were subsequently elucidated using mass spectrometry and in situ small-angle X-ray scattering. Our findings provide a new design approach for protein-based liquid crystalline elastomers and the self-assembly of nanolattices.


Assuntos
Cristais Líquidos , Tubarões , Animais , Colágeno , Humanos , Cristais Líquidos/química , Transição de Fase , Proteômica
6.
J Phys Chem A ; 126(19): 3015-3026, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35522242

RESUMO

We have developed a strategy for distinguishing between small-angle X-ray scattering (SAXS) from gas-phase species and newly formed nanoparticles in mixed gas- and particle-phase reacting flows. This methodology explicitly accounts for temperature-dependent scattering from gases. We measured SAXS in situ in a sooting linear laminar partially premixed co-flow ethylene/air diffusion flame. The scattering signal demonstrates a downward curvature as a function of the momentum transfer (q) at q values of 0.2-0.57 Å-1. The q-dependent curvature is consistent with the Debye equation and the independent-atom model for gas-phase scattering. This behavior can also be modeled using the Guinier approximation and could be characterized as a Guinier knee for gas-phase scattering. The Guinier functional form can be fit to the scattering signal in this q range without a priori knowledge of the gas-phase composition, enabling estimation of the gas-phase contribution to the scattering signal while accounting for changes in the gas-phase composition and temperature. We coupled the SAXS measurements with in situ temperature measurements using coherent anti-Stokes Raman spectroscopy. This approach to characterizing the gas-phase SAXS signal provides a physical basis for distinguishing among the contributions to the scattering signal from the instrument function, flame gases, and nanoparticles. The results are particularly important for the analysis of the SAXS signal in the q range associated with particles in the size range of 1-6 nm.

7.
Nano Lett ; 21(19): 8080-8085, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34585939

RESUMO

Structural versatility and multifunctionality of biological materials have resulted in countless bioinspired strategies seeking to emulate the properties of nature. The nanostructured egg case of swell sharks is one of the toughest permeable membranes known and, thus, presents itself as a model system for materials where the conflicting properties, strength and porosity, are desirable. The egg case possesses an intricately ordered structure that is designed to protect delicate embryos from the external environment while enabling respiratory and metabolic exchange, achieving a tactical balance between conflicting properties. Herein, structural analyses revealed an enabling nanolattice architecture that constitutes a Bouligand-like nanoribbon hierarchical assembly. Three distinct hierarchical architectural adaptations enhance egg case survival: Bouligand-like organization for in-plane isotropic reinforcement, noncylindrical nanoribbons maximizing interfacial stress distribution, and highly ordered nanolattices enabling permeability and lattice-governed toughening mechanisms. These discoveries provide fundamental insights for the improvement of multifunctional membranes, fiber-reinforced soft composites, and mechanical metamaterials.


Assuntos
Nanoestruturas , Tubarões , Animais , Permeabilidade , Porosidade
8.
ACS Appl Mater Interfaces ; 12(51): 57421-57430, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33307687

RESUMO

An important consideration when designing lithium battery electrolytes for advanced applications is how the electrolyte facilitates ion transport at fast charge and discharge rates. Large current densities are accompanied by large salt concentration gradients across the electrolyte. Nanostructured composite electrolytes have been proposed to enable the use of high energy density lithium metal anodes, but many questions about the interplay between the electrolyte morphology and the salt concentration gradient that forms under dc polarization remain unanswered. To address these questions, we use an in situ small-angle X-ray scattering technique to examine the nanostructure of a polystyrene-block-poly(ethylene oxide) copolymer electrolyte under dc polarization with spatial and temporal resolution. In the quiescent state, the electrolyte exhibits a lamellar morphology. The passage of ionic current in a lithium symmetric cell leads to the formation of concurrent phases: a disordered morphology near the negative electrode, lamellae in the center of the cell, and coexisting lamellae and gyroid near the positive electrode. The most surprising result of this study was obtained after the applied electric field was turned off: a current-induced gyroid phase grows in volume for 6 h in spite of the absence of an obvious driving force. We show that this reflects the formation of localized pockets of salt-dense electrolyte, termed concentration hotspots, under dc polarization. Our methods may be applied to understand the dynamic structure of composite electrolytes at appreciable current densities.

9.
ACS Appl Mater Interfaces ; 12(5): 5219-5225, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31951113

RESUMO

A major advantage of organic solar cells (OSC) is the processability out of solution allowing for advanced printing methods toward large-scale production. Controlling the blend morphology of solution coated active layers is a key challenge to optimize their power conversion efficiency. We have derived a printing procedure from an industrial coating process that facilitates tuning the nanomorphology of a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as model system for OSCs. Applying an electric field during printing and the film drying process modifies the vertical film composition of the photoactive layer and optimizes the polymer crystal orientation. The choice of chloroform as solvent allows us to obtain material transport within the wet film, due to an induced electrophoretic mobility. Tailoring the morphology improves the power conversion efficiency of the OSCs by up to 25%. Our findings indicate that electrophoresis assisted printing provides an efficient approach to optimize the active layer for various material and solvent combinations that exhibit an electrophoretic mobility.

10.
Adv Sci (Weinh) ; 6(12): 1900287, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31380168

RESUMO

The osseous sword of a swordfish (Xiphias gladius) is specialized to incapacitate prey with stunning blows. Considering the sword's growth and maturation pattern, aging from the sword's base to the tip, while missing a mechanosensitive osteocytic network, an in-depth understanding of its mechanical properties and bone quality is lacking. Microstructural, compositional, and nanomechanical characteristics of the bone along the sword are investigated to reveal structural mechanisms accounting for its exceptional mechanical competence. The degree of mineralization, homogeneity, and particle size increase from the base toward the tip, reflecting aging along its length. Fracture experiments reveal that crack-growth toughness vastly decreases at the highly and homogeneously mineralized tip, suggesting the importance of aging effects. Initiation toughness, however, is unchanged suggesting that aging effects on this hierarchical level are counteracted by constant mineral/fibril interaction. In conclusion, the sword of the swordfish provides an excellent model reflecting base-to-tip-wise aging of bone, as indicated by increasing mineralization and decreasing crack-growth toughness toward the tip. The hierarchical, structural, and compositional changes along the sword reflect peculiar prerequisites needed for resisting high mechanical loads. Further studies on advanced teleosts bone tissue may help to unravel structure-function relationships of heavily loaded skeletons lacking mechanosensing cells.

11.
Bone ; 127: 91-103, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31055118

RESUMO

Chronic kidney disease (CKD) is a common disease of aging and increases fracture risk over advanced age alone. Aging and CKD differently impair bone turnover and mineralization. We thus hypothesize that the loss of bone quality would be greatest with the combination of advanced age and CKD. We evaluated bone from young adult (6 mo.), middle-age (18 mo.), and old (24 mo.) male C57Bl/6 mice three months following either 5/6th nephrectomy, to induce CKD, or Sham procedures. CKD exacerbated losses of cortical and trabecular microarchitecture associated with aging. Aging and CKD each resulted in thinner, more porous cortices and fewer and thinner trabeculae. Bone material quality was also reduced with CKD, and these changes to bone material were distinct from those due to age. Aging reduced whole-bone flexural strength and modulus, micrometer-scale nanoindentation modulus, and nanometer-scale tissue and collagen strain (small-angle x-ray scattering [SAXS]. By contrast, CKD reduced work to fracture and variation in bone tissue modulus and composition (Raman spectroscopy), and increased percent collagen strain. The increased collagen strain burden was associated with loss of toughness in CKD. In addition, osteocyte lacunae became smaller, sparser, and more disordered with age for Sham mice, yet these age-related changes were not clearly observed in CKD. However, for CKD, larger lacunae positively correlated with increased serum phosphate levels, suggesting that osteocytes play a role in systemic mineral homeostasis. This work demonstrates that CKD reduces bone quality, including microarchitecture and bone material properties, and that loss of bone quality with age is compounded by CKD. These findings may help reconcile why bone mass does not consistently predict fracture in the CKD population, as well as why older individuals with CKD are at high risk of fragility.


Assuntos
Envelhecimento/patologia , Osso e Ossos/patologia , Insuficiência Renal Crônica/patologia , Animais , Fenômenos Biomecânicos , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/patologia , Colágeno/metabolismo , Osso Cortical/diagnóstico por imagem , Osso Cortical/patologia , Análise de Elementos Finitos , Imageamento Tridimensional , Masculino , Camundongos Endogâmicos C57BL , Osteócitos/patologia , Análise de Regressão , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/diagnóstico por imagem , Insuficiência Renal Crônica/urina , Reprodutibilidade dos Testes , Espalhamento a Baixo Ângulo , Tíbia/patologia , Difração de Raios X , Microtomografia por Raio-X
12.
J Bone Miner Res ; 34(8): 1461-1472, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30913317

RESUMO

Bone fracture risk is influenced by bone quality, which encompasses bone's composition as well as its multiscale organization and architecture. Aging and disease deteriorate bone quality, leading to reduced mechanical properties and higher fracture incidence. Largely unexplored is how bone quality and mechanical competence progress during longitudinal bone growth. Human femoral cortical bone was acquired from fetal (n = 1), infantile (n = 3), and 2- to 14-year-old cases (n = 4) at the mid-diaphysis. Bone quality was assessed in terms of bone structure, osteocyte characteristics, mineralization, and collagen orientation. The mechanical properties were investigated by measuring tensile deformation at multiple length scales via synchrotron X-ray diffraction. We find dramatic differences in mechanical resistance with age. Specifically, cortical bone in 2- to 14-year-old cases exhibits a 160% greater stiffness and 83% higher strength than fetal/infantile cases. The higher mechanical resistance of the 2- to 14-year-old cases is associated with advantageous bone quality, specifically higher bone volume fraction, better micronscale organization (woven versus lamellar), and higher mean mineralization compared with fetal/infantile cases. Our study reveals that bone quality is superior after remodeling/modeling processes convert the primary woven bone structure to lamellar bone. In this cohort of female children, the microstructural differences at the femoral diaphysis were apparent between the 1- to 2-year-old cases. Indeed, the lamellar bone in 2- to 14-year-old cases had a superior structural organization (collagen and osteocyte characteristics) and composition for resisting deformation and fracture than fetal/infantile bone. Mechanistically, the changes in bone quality during longitudinal bone growth lead to higher fracture resistance because collagen fibrils are better aligned to resist tensile forces, while elevated mean mineralization reinforces the collagen scaffold. Thus, our results reveal inherent weaknesses of the fetal/infantile skeleton signifying its inferior bone quality. These results have implications for pediatric fracture risk, as bone produced at ossification centers during children's longitudinal bone growth could display similarly weak points. © 2019 American Society for Bone and Mineral Research.


Assuntos
Envelhecimento , Densidade Óssea , Desenvolvimento Ósseo , Fêmur/crescimento & desenvolvimento , Adolescente , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Microtomografia por Raio-X
13.
J Bone Miner Res ; 33(6): 1066-1075, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29342321

RESUMO

Adults with type 2 diabetes (T2D) have a higher fracture risk for a given bone quantity, but the mechanisms remain unclear. Using a rat model of polygenic obese T2D, we demonstrate that diabetes significantly reduces whole-bone strength for a given bone mass (µCT-derived BMC), and we quantify the roles of T2D-induced deficits in material properties versus bone structure; ie, geometry and microarchitecture. Lumbar vertebrae and ulnae were harvested from 6-month-old lean Sprague-Dawley rats, obese Sprague-Dawley rats, and diabetic obese UCD-T2DM rats (diabetic for 69 ± 7 days; blood glucose >200 mg/dL). Both obese rats and those with diabetes had reduced whole-bone strength for a given BMC. In obese rats, this was attributable to structural deficits, whereas in UCD-T2DM rats, this was attributable to structural deficits and to deficits in tissue material properties. For the vertebra, deficits in bone structure included thinner and more rod-like trabeculae; for the ulnae, these deficits included inefficient distribution of bone mass to resist bending. Deficits in ulnar material properties in UCD-T2DM rats were associated with increased non-enzymatic crosslinking and impaired collagen fibril deformation. Specifically, small-angle X-ray scattering revealed that diabetes reduced collagen fibril ultimate strain by 40%, and those changes coincided with significant reductions in the elastic, yield, and ultimate tensile properties of the bone tissue. Importantly, the biomechanical effects of these material property deficits were substantial. Prescribing diabetes-specific tissue yield strains in high-resolution finite element models reduced whole-bone strength by a similar amount (and in some cases a 3.4-fold greater amount) as the structural deficits. These findings provide insight into factors that increase bone fragility for a given bone mass in T2D; not only does diabetes associate with less biomechanically efficient bone structure, but diabetes also reduces tissue ductility by limiting collagen fibril deformation, and in doing so, reduces the maximum load capacity of the bone. © 2018 American Society for Bone and Mineral Research.


Assuntos
Osso e Ossos/patologia , Diabetes Mellitus Tipo 2/patologia , Animais , Fenômenos Biomecânicos , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Análise de Elementos Finitos , Produtos Finais de Glicação Avançada/metabolismo , Obesidade/patologia , Tamanho do Órgão , Ratos Sprague-Dawley , Microtomografia por Raio-X
14.
Rev Sci Instrum ; 88(6): 066101, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28668014

RESUMO

In order to tailor the assembling of polymers and organic molecules, a deeper understanding of the kinetics involved in thin film production is necessary. While post-production characterization only provides insight on the final film structure, more sophisticated experimental setups are needed to probe the structure formation processes in situ during deposition. The drying kinetics of a deposited organic thin film strongly influences the assembling process on the nanometer scale. This work presents an experimental setup that enables fine control of the atmosphere composition surrounding the sample during slot die coating, while simultaneously probing the film formation kinetics using in situ grazing incidence X-ray scattering and spectroscopy.

15.
Nat Commun ; 8: 15688, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28635947

RESUMO

Hybrid lead halide perovskites have emerged as high-performance photovoltaic materials with their extraordinary optoelectronic properties. In particular, the remarkable device efficiency is strongly influenced by the perovskite crystallinity and the film morphology. Here, we investigate the perovskites crystallisation kinetics and growth mechanism in real time from liquid precursor continually to the final uniform film. We utilize some advanced in situ characterisation techniques including synchrotron-based grazing incident X-ray diffraction to observe crystal structure and chemical transition of perovskites. The nano-assemble model from perovskite intermediated [PbI6]4- cage nanoparticles to bulk polycrystals is proposed to understand perovskites formation at a molecular- or nano-level. A crystallisation-depletion mechanism is developed to elucidate the periodic crystallisation and the kinetically trapped morphology at a mesoscopic level. Based on these in situ dynamics studies, the whole process of the perovskites formation and transformation from the molecular to the microstructure over relevant temperature and time scales is successfully demonstrated.

16.
J Vis Exp ; (119)2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28190050

RESUMO

Polymer-based materials hold promise as low-cost, flexible efficient photovoltaic devices. Most laboratory efforts to achieve high performance devices have used devices prepared by spin coating, a process that is not amenable to large-scale fabrication. This mismatch in device fabrication makes it difficult to translate quantitative results obtained in the laboratory to the commercial level, making optimization difficult. Using a mini-slot die coater, this mismatch can be resolved by translating the commercial process to the laboratory and characterizing the structure formation in the active layer of the device in real time and in situ as films are coated onto a substrate. The evolution of the morphology was characterized under different conditions, allowing us to propose a mechanism by which the structures form and grow. This mini-slot die coater offers a simple, convenient, material efficient route by which the morphology in the active layer can be optimized under industrially relevant conditions. The goal of this protocol is to show experimental details of how a solar cell device is fabricated using a mini-slot die coater and technical details of running in situ structure characterization using the mini-slot die coater.


Assuntos
Polímeros/química , Tecnologia/métodos , Eletrodos , Desenho de Equipamento , Energia Solar , Síncrotrons , Tecnologia/instrumentação , Difração de Raios X
17.
Sci Rep ; 6: 21072, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26879146

RESUMO

Bisphosphonates are a common treatment to reduce osteoporotic fractures. This treatment induces osseous structural and compositional changes accompanied by positive effects on osteoblasts and osteocytes. Here, we test the hypothesis that restored osseous cell behavior, which resembles characteristics of younger, healthy cortical bone, leads to improved bone quality. Microarchitecture and mechanical properties of young, treatment-naïve osteoporosis, and bisphosphonate-treated cases were investigated in femoral cortices. Tissue strength was measured using three-point bending. Collagen fibril-level deformation was assessed in non-traumatic and traumatic fracture states using synchrotron small-angle x-ray scattering (SAXS) at low and high strain rates. The lower modulus, strength and fibril deformation measured at low strain rates reflects susceptibility for osteoporotic low-energy fragility fractures. Independent of age, disease and treatment status, SAXS revealed reduced fibril plasticity at high strain rates, characteristic of traumatic fracture. The significantly reduced mechanical integrity in osteoporosis may originate from porosity and alterations to the intra/extrafibrillar structure, while the fibril deformation under treatment indicates improved nano-scale characteristics. In conclusion, losses in strength and fibril deformation at low strain rates correlate with the occurrence of fragility fractures in osteoporosis, while improvements in structural and mechanical properties following bisphosphonate treatment may foster resistance to fracture during physiological strain rates.


Assuntos
Fenômenos Biomecânicos , Osso Cortical , Difosfonatos/farmacologia , Fêmur , Fraturas Ósseas/etiologia , Osteoporose/etiologia , Absorciometria de Fóton , Adulto , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea , Conservadores da Densidade Óssea/farmacologia , Osso Cortical/citologia , Osso Cortical/efeitos dos fármacos , Osso Cortical/patologia , Osso Cortical/fisiopatologia , Feminino , Fraturas Ósseas/patologia , Fraturas Ósseas/fisiopatologia , Humanos , Imageamento Tridimensional , Masculino , Osteoporose/complicações , Osteoporose/patologia , Osteoporose/fisiopatologia , Porosidade , Espalhamento a Baixo Ângulo , Resistência à Tração , Tomografia Computadorizada por Raios X , Difração de Raios X
18.
Nano Lett ; 15(12): 8240-4, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26579565

RESUMO

Assembly of presynthesized nanocrystals by block copolymer micelles can be rationalized by the incorporation of nanocrystals into micellar coronas of constant width. As determined by quantitative analysis using small-angle X-ray scattering, high loading of small nanocrystals yields composites exhibiting order on two length scales, whereas intermediate loading of nanocrystals larger than the coronal width produces single nanocrystal networks. The resulting structures obey expectations of thermodynamically driven assembly on the nanocrystal length scale, whereas kinetically frozen packing principles dictate order on the polymer micelle length scale.

19.
Bone ; 81: 352-363, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26253333

RESUMO

Bisphosphonates are widely used to treat osteoporosis, but have been associated with atypical femoral fractures (AFFs) in the long term, which raises a critical health problem for the aging population. Several clinical studies have suggested that the occurrence of AFFs may be related to the bisphosphonate-induced changes of bone turnover, but large discrepancies in the results of these studies indicate that the salient mechanisms responsible for any loss in fracture resistance are still unclear. Here the role of bisphosphonates is examined in terms of the potential deterioration in fracture resistance resulting from both intrinsic (plasticity) and extrinsic (shielding) toughening mechanisms, which operate over a wide range of length-scales. Specifically, we compare the mechanical properties of two groups of humeri from healthy beagles, one control group comprising eight females (oral doses of saline vehicle, 1 mL/kg/day, 3 years) and one treated group comprising nine females (oral doses of alendronate used to treat osteoporosis, 0.2mg/kg/day, 3 years). Our data demonstrate treatment-specific reorganization of bone tissue identified at multiple length-scales mainly through advanced synchrotron x-ray experiments. We confirm that bisphosphonate treatments can increase non-enzymatic collagen cross-linking at molecular scales, which critically restricts plasticity associated with fibrillar sliding, and hence intrinsic toughening, at nanoscales. We also observe changes in the intracortical architecture of treated bone at microscales, with partial filling of the Haversian canals and reduction of osteon number. We hypothesize that the reduced plasticity associated with BP treatments may induce an increase in microcrack accumulation and growth under cyclic daily loadings, and potentially increase the susceptibility of cortical bone to atypical (fatigue-like) fractures.


Assuntos
Alendronato/uso terapêutico , Osso e Ossos/efeitos dos fármacos , Administração Oral , Animais , Conservadores da Densidade Óssea/uso terapêutico , Osso e Ossos/fisiologia , Colágeno/química , Reagentes de Ligações Cruzadas/química , Cães , Módulo de Elasticidade , Feminino , Produtos Finais de Glicação Avançada/metabolismo , Úmero/fisiologia , Osteoporose/prevenção & controle , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Resistência à Tração
20.
Nat Commun ; 6: 6649, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25812485

RESUMO

Tear resistance is of vital importance in the various functions of skin, especially protection from predatorial attack. Here, we mechanistically quantify the extreme tear resistance of skin and identify the underlying structural features, which lead to its sophisticated failure mechanisms. We explain why it is virtually impossible to propagate a tear in rabbit skin, chosen as a model material for the dermis of vertebrates. We express the deformation in terms of four mechanisms of collagen fibril activity in skin under tensile loading that virtually eliminate the possibility of tearing in pre-notched samples: fibril straightening, fibril reorientation towards the tensile direction, elastic stretching and interfibrillar sliding, all of which contribute to the redistribution of the stresses at the notch tip.


Assuntos
Derme/fisiologia , Colágenos Fibrilares/fisiologia , Pele , Estresse Mecânico , Resistência à Tração/fisiologia , Animais , Fenômenos Biomecânicos , Derme/ultraestrutura , Elasticidade/fisiologia , Colágenos Fibrilares/ultraestrutura , Microscopia Eletrônica de Varredura , Coelhos , Pele/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...